Central pattern generator for swimming in Melibe.

نویسندگان

  • Stuart Thompson
  • Winsor H Watson
چکیده

The nudibranch mollusc Melibe leonina swims by bending from side to side. We have identified a network of neurons that appears to constitute the central pattern generator (CPG) for this locomotor behavior, one of only a few such networks to be described in cellular detail. The network consists of two pairs of interneurons, termed 'swim interneuron 1' (sint1) and 'swim interneuron 2' (sint2), arranged around a plane of bilateral symmetry. Interneurons on one side of the brain, which includes the paired cerebral, pleural and pedal ganglia, coordinate bending movements toward the same side and communicate via non-rectifying electrical synapses. Interneurons on opposite sides of the brain coordinate antagonistic movements and communicate over mutually inhibitory synaptic pathways. Several criteria were used to identify members of the swim CPG, the most important being the ability to shift the phase of swimming behavior in a quantitative fashion by briefly altering the firing pattern of an individual neuron. Strong depolarization of any of the interneurons produces an ipsilateral swimming movement during which the several components of the motor act occur in sequence. Strong hyperpolarization causes swimming to stop and leaves the animal contracted to the opposite side for the duration of the hyperpolarization. The four swim interneurons make appropriate synaptic connections with motoneurons, exciting synergists and inhibiting antagonists. Finally, these are the only neurons that were found to have this set of properties in spite of concerted efforts to sample widely in the Melibe CNS. This led us to conclude that these four cells constitute the CPG for swimming. While sint1 and sint2 work together during swimming, they play different roles in the generation of other behaviors. Sint1 is normally silent when the animal is crawling on a surface but it depolarizes and begins to fire in strong bursts once the foot is dislodged and the animal begins to swim. Sint2 also fires in bursts during swimming, but it is not silent in non-swimming animals. Instead activity in sint2 is correlated with turning movements as the animal crawls on a surface. This suggests that the Melibe motor system is organized in a hierarchy and that the alternating movements characteristic of swimming emerge when activity in sint1 and sint2 is bound together.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Different Roles for Homologous Interneurons in Species Exhibiting Similar Rhythmic Behaviors

It is often assumed that similar behaviors in related species are produced by similar neural mechanisms. To test this, we examined the neuronal basis of a simple swimming behavior in two nudibranchs (Mollusca, Opisthobranchia), Melibe leonina and Dendronotus iris. The side-to-side swimming movements of Dendronotus [1] strongly resemble those of Melibe [2, 3]. In Melibe, it was previously shown ...

متن کامل

Toward robust phase-locking in Melibe swim central pattern generator models.

Small groups of interneurons, abbreviated by CPG for central pattern generators, are arranged into neural networks to generate a variety of core bursting rhythms with specific phase-locked states, on distinct time scales, which govern vital motor behaviors in invertebrates such as chewing and swimming. These movements in lower level animals mimic motions of organs in higher animals due to evolu...

متن کامل

Two Interconnected Kernels of Reciprocally Inhibitory Interneurons Underlie Alternating Left-right Swim 1 Motor Pattern Generation in the Mollusc Melibe Leonina 2 3

Two interconnected kernels of reciprocally inhibitory interneurons underlie alternating left-right swim 1 motor pattern generation in the mollusc Melibe leonina 2 3 Akira Sakurai, Charuni A. Gunaratne, and Paul S. Katz 4 5 Running head: Swim central pattern generator of the mollusc Melibe leonina 6 7 8 Acknowledgements: The authors thank anonymous reviewers for valuable comments and discussions...

متن کامل

Homology and homoplasy of swimming behaviors and neural circuits in the Nudipleura (Mollusca, Gastropoda, Opisthobranchia).

How neural circuit evolution relates to behavioral evolution is not well understood. Here the relationship between neural circuits and behavior is explored with respect to the swimming behaviors of the Nudipleura (Mollusca, Gastropoda, Opithobranchia). Nudipleura is a diverse monophyletic clade of sea slugs among which only a small percentage of species can swim. Swimming falls into a limited n...

متن کامل

Two interconnected kernels of reciprocally inhibitory interneurons underlie alternating left-right swim motor pattern generation in the mollusk Melibe leonina.

The central pattern generator (CPG) underlying the rhythmic swimming behavior of the nudibranch Melibe leonina (Mollusca, Gastropoda, Heterobranchia) has been described as a simple half-center oscillator consisting of two reciprocally inhibitory pairs of interneurons called swim interneuron 1 (Si1) and swim interneuron 2 (Si2). In this study, we identified two additional pairs of interneurons t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 208 Pt 7  شماره 

صفحات  -

تاریخ انتشار 2005